Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.673
Filtrar
1.
Science ; 383(6684): 721-726, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38359125

RESUMO

We report the design conception, chemical synthesis, and microbiological evaluation of the bridged macrobicyclic antibiotic cresomycin (CRM), which overcomes evolutionarily diverse forms of antimicrobial resistance that render modern antibiotics ineffective. CRM exhibits in vitro and in vivo efficacy against both Gram-positive and Gram-negative bacteria, including multidrug-resistant strains of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. We show that CRM is highly preorganized for ribosomal binding by determining its density functional theory-calculated, solution-state, solid-state, and (wild-type) ribosome-bound structures, which all align identically within the macrobicyclic subunits. Lastly, we report two additional x-ray crystal structures of CRM in complex with bacterial ribosomes separately modified by the ribosomal RNA methylases, chloramphenicol-florfenicol resistance (Cfr) and erythromycin-resistance ribosomal RNA methylase (Erm), revealing concessive adjustments by the target and antibiotic that permit CRM to maintain binding where other antibiotics fail.


Assuntos
Antibacterianos , Hidrocarbonetos Aromáticos com Pontes , Farmacorresistência Bacteriana Múltipla , Lincosamidas , Oxepinas , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Eritromicina/química , Eritromicina/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Hidrocarbonetos Aromáticos com Pontes/síntese química , Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Oxepinas/síntese química , Oxepinas/química , Oxepinas/farmacologia , Lincosamidas/síntese química , Lincosamidas/química , Lincosamidas/farmacologia , Animais , Camundongos , Desenho de Fármacos , Ribossomos/química
2.
Int J Biol Macromol ; 245: 125577, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37379944

RESUMO

In this study, graphene oxide/N-halamine nanocomposite was synthesized through Pickering miniemulsion polymerization, which was then coated on cotton surface. The modified cotton exhibited excellent superhydrophobicity, which could effectively prevent microbial infestation and reduce the probability of hydrolysis of active chlorine, with virtually no active chlorine released in water after 72 h. Deposition of reduced graphene oxide nanosheets endowed cotton with ultraviolet-blocking properties, attributing to enhanced UV adsorption and long UV paths. Moreover, encapsulation of polymeric N-halamine resulted in improved UV stability, thus extending the life of N-halamine-based agents. After 24 h of irradiation, 85 % of original biocidal component (active chlorine content) was retained, and approximately 97 % of initial chlorine could be regenerated. Modified cotton has been proven to be an effective oxidizing material against organic pollutants and a potential antimicrobial substance. Inoculated bacteria were completely killed after 1 and 10 min of contact time, respectively. An innovative and simple scheme for determination of active chlorine content was also devised, and real-time inspection of bactericidal activity could be achieved to assure antimicrobial sustainability. Moreover, this method could be utilized to evaluate hazard classification of microbial contamination in different locations, thus broadening the application scope of N-halamine-based cotton fabrics.


Assuntos
Aminas , Antibacterianos , Fibra de Algodão , Gossypium , Látex , Nanoestruturas , Polimerização , Aminas/química , Aminas/efeitos da radiação , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/efeitos da radiação , Biofilmes/efeitos dos fármacos , Cloro/química , Corantes , Fibra de Algodão/microbiologia , Fibra de Algodão/efeitos da radiação , Desinfetantes/química , Desinfetantes/efeitos da radiação , Condutividade Elétrica , Contaminação de Equipamentos/prevenção & controle , Gossypium/química , Gossypium/microbiologia , Grafite/química , Halogenação , Interações Hidrofóbicas e Hidrofílicas , Látex/química , Látex/efeitos da radiação , Nanoestruturas/química , Nanoestruturas/efeitos da radiação , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Indústria Têxtil/métodos , Raios Ultravioleta , Água/química
3.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902121

RESUMO

Pesticides play an important role in crop disease and pest control. However, their irrational use leads to the emergence of drug resistance. Therefore, it is necessary to search for new pesticide-lead compounds with new structures. We designed and synthesized 33 novel pyrimidine derivatives containing sulfonate groups and evaluated their antibacterial and insecticidal activities. Results: Most of the synthesized compounds showed good antibacterial activity against Xanthomonas oryzae pv. Oryzae (Xoo), Xanthomonas axonopodis pv. Citri (Xac), Pseudomonas syringae pv. actinidiae (Psa) and Ralstonia solanacearum (Rs), and certain insecticidal activity. A5, A31 and A33 showed strong antibacterial activity against Xoo, with EC50 values of 4.24, 6.77 and 9.35 µg/mL, respectively. Compounds A1, A3, A5 and A33 showed remarkable activity against Xac (EC50 was 79.02, 82.28, 70.80 and 44.11 µg/mL, respectively). In addition, A5 could significantly improve the defense enzyme (superoxide dismutase, peroxidase, phenylalanine ammonia-lyase and catalase) activity of plants against pathogens and thus improve the disease resistance of plants. Moreover, a few compounds also showed good insecticidal activity against Plutella xylostella and Myzus persicae. The results of this study provide insight into the development of new broad-spectrum pesticides.


Assuntos
Antibacterianos , Ésteres , Praguicidas , Pirimidinas , Sulfetos , Alcanossulfonatos , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Ésteres/síntese química , Ésteres/química , Ésteres/farmacologia , Testes de Sensibilidade Microbiana , Oryza/microbiologia , Praguicidas/síntese química , Praguicidas/química , Praguicidas/farmacologia , Doenças das Plantas/microbiologia , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Sulfetos/síntese química , Sulfetos/química , Sulfetos/farmacologia , Xanthomonas/efeitos dos fármacos
4.
J Adv Res ; 44: 81-90, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725195

RESUMO

Nanozyme was considered as one of the most promising substitutes for antibiotics, due to the selective catalysis for pathogens. In this work, a high-antibacterial activity SOD-like nanozyme based on hybrid Ag/CeO2 nanocomposite was facilely prepared by using an innovative approach of selective laser welding in liquid. This prepared nanozyme displayed a high antimicrobial effect against Staphylococcus aureus under visible light illumination, the sterilization rate as high as 82.4%, which was 2.93 and 2.99 times higher than those of pure Ag and pure CeO2, respectively. The enhanced antibacterial activity was attributed to the anchoring of Ag nanospheres on the surface of CeO2 nanosheets, which induced the reduction of CeO2 bandgap and boosted the visible light harvesting. Therefore, the charge carriers can be effectively stimulated to produce abundant reactive oxygen species on the Ag/CeO2 nanocomposite via a SOD-like route. This work demonstrated a facile strategy for the preparation of high-antibacterial activity nanozyme, giving it great potential for scalable application in the biomedical and pharmaceutical industry.


Assuntos
Lasers , Nanocompostos , Staphylococcus aureus , Superóxido Dismutase , Antibacterianos/síntese química , Antibacterianos/farmacologia , Luz , Superóxido Dismutase/farmacologia , Nanocompostos/química , Compostos de Prata
5.
Braz. j. biol ; 83: 1-9, 2023. ilus, tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468915

RESUMO

Many soil microorganisms' i.e., bacteria and fungi produce secondary metabolites called antibiotics. These are used for the treatment of some of the bacterial, fungal and protozoal diseases of humans. There is a need for isolation of a broad spectrum of antibiotics from microorganisms due to the emergence of antibiotic resistance. In the present study two antibiotic producing bacteria Klebsiella pneumoniae and Bacillus cereus were isolated from pharmaceutical and poultry feed industry of Hattar, Haripur Pakistan. Total 10 waste samples were collected from different industries (Marble, Ghee, Soap, Mineral, Steel, Poultry Feed, Pharmaceutical, Qarshi, Cosmetic and Glass). Thirty-three bacterial strains were isolated from industrial wastes of these ten different industries. Fourteen out of thirty-three bacterial strains exhibited antimicrobial activities against at least one of the test microbes considered in this study including Escherchia coli, Staphylococcus aureus and Salmonella typhi. The bacteria were isolated by standard serial dilution spread plate technique. Morphological characterization of the isolates was done by Gram staining. Nine bacterial isolates out of fourteen were initially identified as B. cereus and five as K. pneumoniae through biochemical characterization. The antibacterial activities were tested by well diffusion method. Maximum number of antibiotic producing bacteria were isolated from pharmaceutical and poultry feed industry based on the results of primary screening, the most potential isolates S9, S19, S20, S22 and S23 were selected for secondary screening. The maximum activity against E. coli and S. aureus was recorded by bacterial isolate S19 i.e zones of inhibition of 6.5mm and 9mm while S20 showed 7.5mm and 6mm zones respectively. Molecular identification was carried out on the basis of 16S rRNA sequence [...].


Muitos microrganismos do solo, ou seja, bactérias e fungos produzem metabólitos secundários chamados antibióticos. Eles são usados para tratamento de algumas doenças bacterianas, fúngicas e protozoárias em humanos. Há necessidade de isolamento de um amplo espectro de antibióticos de microrganismos devido ao surgimento de resistência aos antibióticos. No presente estudo, duas bactérias produtoras de antibióticos, Klebsiella pneumoniae e Bacillus cereus, foram isoladas da indústria farmacêutica e de ração avícola de Hattar, Haripur, Paquistão. Um total de 10 amostras de resíduos foi coletado de diferentes indústrias (mármore, ghee, sabão, mineral, aço, ração para aves, farmacêutica, Qarshi, cosmética e vidro). Trinta e três cepas bacterianas foram isoladas de resíduos industriais dessas dez diferentes indústrias. Quatorze das 33 cepas bacterianas exibiram atividades antimicrobianas contra pelo menos um dos micróbios de teste considerados neste estudo, incluindo Escherchia coli, Staphylococcus aureus e Salmonella typhi. As bactérias foram isoladas pela técnica de placa de diluição em série padrão. A caracterização morfológica dos isolados foi feita por coloração de gram. Nove isolados bacterianos de 14 foram inicialmente identificados como B. cereus e cinco como K. pneumoniae por meio de caracterização bioquímica. As atividades antibacterianas foram testadas pelo método de difusão em poço. O número máximo de bactérias produtoras de antibióticos foi isolado da indústria farmacêutica e de ração avícola com base nos resultados da triagem primária, os isolados mais potenciais S9, S19, S20, S22 e S23 foram selecionados para a triagem secundária. A atividade máxima contra E. coli e S. aureus foi registrada pelo isolado bacteriano S19, ou seja, zonas de inibição de 6,5 mm e 9 mm, enquanto S20 mostrou zonas de 7,5 mm e 6 mm, respectivamente. A identificação molecular foi realizada com base na análise da sequência 16S [...].


Assuntos
Antibacterianos/síntese química , Bacillus cereus/isolamento & purificação , Klebsiella/isolamento & purificação , Ração Animal/análise , Resíduos Industriais/análise
6.
J Med Chem ; 65(24): 16879-16892, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36512751

RESUMO

Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) continue to endanger public health. Here, we report the synthesis of neolignan isomagnolone (I) and its isomer II, and the preparation of a series of novel neolignan-antimicrobial peptide (AMP) mimic conjugates. Notably, conjugates III5 and III15 exhibit potent anti-MRSA activity in vitro and in vivo, comparable to that of vancomycin, a current effective treatment for MRSA. Moreover, III5 and III15 display not only fast-killing kinetics and low resistance frequency but also low toxicity as well as effects on bacterial biofilms. Mechanism studies reveal that III5 and III15 exhibit rapid bactericidal effects through binding to the phosphatidylglycerol (PG) and cardiolipin (CL) of the bacterial membrane, thereby disrupting the cell membranes and allowing increased reactive oxygen species (ROS) as well as protein and DNA leakage. The results indicate that these neolignan-AMP mimic conjugates could be promising antimicrobial candidates for combating MRSA infections.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Lignanas , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/síntese química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Peptídeos Antimicrobianos/síntese química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Lignanas/síntese química , Lignanas/farmacologia , Lignanas/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Vancomicina/farmacologia , Animais , Camundongos
7.
J Nat Prod ; 85(9): 2217-2225, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36062892

RESUMO

Neocyclomorusin (1), a natural bioactive pyranoflavone mainly isolated from plants of the Moraceae family, was synthesized for the first time using a Friedel-Crafts reaction, a Baker-Venkataraman (BK-VK) rearrangement, a selective epoxidation, and a novel SN2-type cyclization as the key steps. The present protocol was also successfully applied for the total synthesis of oxyisocyclointegrin (2). Structurally related natural products morusin (23) and cudraflavone B (24) were also prepared. We investigated the antibacterial activities of these natural compounds against both Gram-negative and Gram-positive strains. The prenylated flavones, morusin (23) and cudraflavone B (24), showed comparable activity to ampicillin and kanacycin A against Staphylococcus aureus. Both morusin (23) and cudraflavone B (24) showed better antibacterial activities than ampicillin against the Gram-positive bacteria Staphylococcus epidermidis and Bacillus subtilis. Both neocyclomorusin (1) and oxyisocyclointegrin (2) displayed disappointing antimicrobial activities against Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, and Bacillus subtilis strains.


Assuntos
Antibacterianos , Escherichia coli , Flavonas , Bactérias Gram-Positivas , Ampicilina/farmacologia , Antibacterianos/síntese química , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Flavonas/síntese química , Flavonas/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Staphylococcus aureus/efeitos dos fármacos
9.
Dalton Trans ; 51(11): 4466-4476, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35229854

RESUMO

The emergence of nanoscience and its effect on the development of diverse scientific fields, particularly materials chemistry, are well known today. In this study, a new di-substituted phthalonitrile derivative, namely 4,5-bis((4-(dimethylamino)phenyl)ethynyl)phthalonitrile (1), and its octa-substituted metal phthalocyanines {M = Co (2), Zn (3)} were prepared. All the newly synthesized compounds were characterized using a number of spectroscopic approaches, including FT-IR, mass, NMR, and UV-vis spectroscopy. The resultant compounds modified the surface of the gold nanoparticles (NG-1-3). Characterization of the newly synthesized conjugates was carried out by transmission electron microscopy. The antioxidant activity of compounds 1-3, NG-1-3, and NG was evaluated using the DPPH scavenging process and the highest radical scavenging activity was obtained with compounds 1, NG-1, 2, and NG-2 (100%). The antimicrobial activity of compounds 1-3, NG-1-3, and NG was studied using a microdilution assay and the most effective antimicrobial activity was obtained for NG-3 against all the tested microorganisms. The newly synthesized compounds demonstrated high DNA cleavage activity. Compounds 1-3, NG-1-3, and NG significantly inhibited the microbial cell viability of E. coli and exhibited perfect antimicrobial photodynamic therapeutic activity with 100% inhibition after 20 min LED irradiation. Besides, the biofilm inhibition activity of compounds 1-3, NG-1-3, and NG on the growth of S. aureus and P. aeruginosa were examined and compounds 1-3 and NG-1-3, especially NG-1-3, displayed high biofilm inhibition activities.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Complexos de Coordenação/farmacologia , Escherichia coli/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Antioxidantes/síntese química , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Isoindóis/química , Isoindóis/farmacologia , Nanopartículas Metálicas , Metais Pesados/química , Metais Pesados/farmacologia , Testes de Sensibilidade Microbiana , Picratos/antagonistas & inibidores
10.
Bioorg Med Chem ; 57: 116648, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35124457

RESUMO

Antibiotic resistance is one of the greatest threats to modern medicine. Drugs that were once routinely used to treat infections are being rendered ineffective, increasing the demand for novel antibiotics with low potential for resistance. Here we report the synthesis of 18 novel cationic tetrahydroisoquinoline-triazole compounds. Five of the developed molecules were active against S. aureus at a low MIC of 2-4 µg/mL. Hit compound 4b was also found to eliminate M. tuberculosis H37Rv at MIC of 6 µg/mL. This potent molecule was found to eliminate S. aureus effectively, with no resistance observed after thirty days of sequential passaging. These results identified compound 4b and its analogues as potential candidates for further drug development that could help tackle the threat of antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Tetra-Hidroisoquinolinas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Tetra-Hidroisoquinolinas/síntese química , Tetra-Hidroisoquinolinas/química
11.
Org Biomol Chem ; 20(9): 1974-1981, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35179161

RESUMO

Trehalose-based probes are useful tools that allow the detection of the mycomembrane of mycobacteria through the metabolic labeling approach. Trehalose analogues conjugated to fluorescent probes can be used, and other probes are functionalized with a bioorthogonal chemical reporter for a two-step labeling approach. The synthesis of such trehalose-based probes mainly relies on the desymmetrization of natural trehalose using a large number of regioselective protection-deprotection steps to differentiate the eight hydroxyl groups. Herein, in order to avoid these time-consuming steps, we reinvestigated our previously reported tandem protocol mediated by FeCl3·6H2O, with the aim of modifying the ratio of the products to allow the challenging desymmetrization of the C2-symmetrical disaccharide trehalose. We demonstrate the usefulness of this method in providing easy access to trehalose analogues with a bioorthogonal moiety or a fluorophore in C-2, and also present their use in a one-step and two-step labeling approach, either of which can be used to study the mycomembrane in live mycobacteria.


Assuntos
Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Cloretos/farmacologia , Corynebacterium/efeitos dos fármacos , Compostos Férricos/farmacologia , Trealose/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Cloretos/química , Compostos Férricos/química , Testes de Sensibilidade Microbiana , Trealose/síntese química , Trealose/química
12.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208949

RESUMO

Nanotechnology has become a dire need of the current era and the green synthesis of nanoparticles offers several advantages over other methods. Nanobiotechnology is an emerging field that contributes to many domains of human life, such as the formulation of nanoscale drug systems or nanomedicine for the diagnosis and treatment of diseases. Medicinal plants are the main sources of lead compounds, drug candidates and drugs. This work reports the green synthesis of Ag nanoparticles (AgNPs) using the aqueous bark extract of Zanthozylum armatum, which was confirmed by a UV absorption at 457 nm. XRD analysis revealed an average size of 18.27 nm and SEM showed the particles' spherical shape, with few irregularly shaped particles due to the aggregation of the AgNPs. FT-IR revealed the critical functional groups of phytochemicals which acted as reducing and stabilizing agents. The bark extract showed rich flavonoids (333 mg RE/g) and phenolic contents (82 mg GAE/g), which were plausibly responsible for its high antioxidant potency (IC50 = 14.61 µg/mL). Extract-loaded AgNPs exhibited the highest but equal inhibition against E. coli and P. aeruginosa (Z.I. 11.0 mm), whereas methanolic bark extract inhibited to a lesser extent, but equally to both pathogens (Z.I. 6.0 mm). The aqueous bark extract inhibited P. aeruginosa (Z.I. 9.0 mm) and (Z.I. 6.0 mm) E. coli. These findings-especially the biosynthesis of spherical AgNPs of 18.27 nm-provide promise for further investigation and for the development of commercializable biomedical products.


Assuntos
Antibacterianos , Escherichia coli/crescimento & desenvolvimento , Nanopartículas Metálicas/química , Extratos Vegetais/química , Pseudomonas aeruginosa/crescimento & desenvolvimento , Prata , Zanthoxylum/química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Prata/química , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Molecules ; 27(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35209025

RESUMO

This research aims to investigate the synthesis, characterization, and evaluation of the biocompatibility and antibacterial activity of novel zinc oxide (ZnO) nanoparticles (NPs) prepared by Punica granatum peel and coffee ground extracts as the reducing and capping agents. Chemically synthesized ZnONPs were prepared using zinc acetate dihydrate and sodium hydroxide as reducing precursors. ZnONPs were characterized using an ultraviolet-visible spectrophotometer (UV-VIS), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform infrared (FTIR) spectroscopy. Peaks of UV spectra were 300 nm for ZnONPs_PPE, 320 nm (ZnONPs_CE), 290 nm, and 440 nm (ZnONP_Chem), thereby confirming ZnONPs formation. The X-ray diffractograms revealed their hexagonal structure. TEM micrographs of the biosynthesized ZnONPs revealed their hexagonal pattern and nanorod shape for ZnONPs_Chem with particle sizes of 118.6 nm, 115.7 nm, and 111.2 nm, respectively. The FTIR analysis demonstrated the presence of proteins, carboxyl, and hydroxyl groups on ZnONPs surfaces that act as reducing and stabilizing agents. ZnONP_Chem shows the antibacterial effect on Staphylococcus aureus, Enterobacter aerogenes, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Punica peel and coffee ground extracts are effective reducing agents for green ZnONPs synthesis with a lower cytotoxic effect on Vero cells than ZnONPs_Chem with IC50 = 111, 103, and 93 µg/mL, respectively.


Assuntos
Antibacterianos , Bactérias/crescimento & desenvolvimento , Café/química , Frutas/química , Teste de Materiais , Nanopartículas/química , Punica granatum/química , Óxido de Zinco , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Chlorocebus aethiops , Células Vero , Óxido de Zinco/química , Óxido de Zinco/farmacologia
14.
Molecules ; 27(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35209201

RESUMO

The need for biodegradable and biocompatible polymers is growing quickly, particularly in the biomedical and environmental industries. Cellulose acetate, a natural polysaccharide, can be taken from plants and modified with polycaprolactone to improve its characteristics for a number of uses, including biomedical applications and food packaging. Cellulose acetate-g-polycaprolactone was prepared by a three-step reaction: First, polymerization of ε-caprolactone via ring-opening polymerization (ROP) reaction using 2-hydroxyethyl methacrylate (HEMA) and functionalization of polycaprolactone(PCL) by introducing NCO on the hydroxyl end of the HEMA-PCL using hexamethyl lenediisocyanate(HDI) were carried out. Then, the NCO-HEMA-PCL was grafted onto cellulose acetate (using the "grafting to" method). The polycaprolactone grafted cellulose acetate was confirmed by FTIR, the thermal characteristics of the copolymers were investigated by DSC and TGA, and the hydrophobicity was analyzed via water CA measurement. Introducing NCO-PCL to cellulose acetate increased the thermal stability. The contact angle of the unreacted PCL was higher than that of cellulose acetate-g-PCL, and it increased when the chain length increased. The CA-g-PCL50, CA-g-PCL100, and CA-g-PCL200 showed very high inhibition zones for all three bacteria tested (E. coli, S. aureus, and P. aeruginosa).


Assuntos
Antibacterianos , Bactérias/crescimento & desenvolvimento , Celulose/análogos & derivados , Embalagem de Alimentos , Poliésteres , Polimerização , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Celulose/síntese química , Celulose/química , Celulose/farmacologia , Poliésteres/síntese química , Poliésteres/química , Poliésteres/farmacologia
15.
Biomed Res Int ; 2022: 7228259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187170

RESUMO

In addition to the physical barrier, the epidermis acts as a natural barrier against microbial proliferation. It is prone to bacterial infections on the skin and in the nose, such as Staphylococcus aureus, as well as a variety of other skin illnesses. Green nanomaterial production, which eliminates the use of harmful chemicals while simultaneously reducing time, is gaining popularity in the nanotechnology area. Using the leaf extract of the pharmacologically valuable plant Moringa oleifera, we described a green synthesis of ZnO NPs (zinc oxide nanoparticles). ZnO NPs had a particle size of 201.6 nm and a zeta potential of -56.80 mV, respectively. A novel aminoketone antibacterial medication was synthesized and tested for antibacterial activity using ZnO NPs as a phytocatalyst in this work. This method produces high yields while maintaining efficient and gentle reaction conditions. Moringa oleifera extract can reduce ZnO to ZnO NPs in a straightforward manner. FT-IR, 1H-NMR, 13C-NMR, mass spectra, elemental analysis, and morphological analysis were used to synthesize and describe the antibacterial medicines (1a-1g) and (2a-2g). In addition, antibacterial activity was evaluated against bacteria such as Enterococcus faecalis and Staphylococcus aureus, and compound 1c (63 µg/mL, E. faecalis) and compound 2e (0.12 µg/mL, S. aureus) were found to be very active when compared to other medications. mupirocin is used as a reference. In addition, studies of in silico molecular docking for the bacterial DsbA protein were conducted. The strong molecules 1c (-4.3 kcal/mol) and 2e (-5.1 kcal/mol) exhibit a high binding affinity through hydrogen bonding, according to docking tests.


Assuntos
Antibacterianos/síntese química , Moringa oleifera/química , Nanopartículas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Química Verde , Simulação de Acoplamento Molecular , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos
16.
Molecules ; 27(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163939

RESUMO

Since the synthesis of prontosil the first prodrug shares their chemical moiety, sulfonamides exhibit diverse modes of actions to serve as antimicrobials, diuretics, antidiabetics, and other clinical applications. This inspiring chemical nucleus has promoted several research groups to investigate the synthesis of new members exploring new clinical applications. In this study, a novel series of 5(4H)-oxazolone-based-sulfonamides (OBS) 9a-k were synthesized, and their antibacterial and antifungal activities were evaluated against a wide range of Gram-positive and -negative bacteria and fungi. Most of the tested compounds exhibited promising antibacterial activity against both Gram-positive and -negative bacteria particularly OBS 9b and 9f. Meanwhile, compound 9h showed the most potent antifungal activity. Moreover, the OBS 9a, 9b, and 9f that inhibited the bacterial growth at the lowest concentrations were subjected to further evaluation for their anti-virulence activities against Pseudomonas aeruginosa and Staphylococcus aureus. Interestingly, the three tested compounds reduced the biofilm formation and diminished the production of virulence factors in both P. aeruginosa and S. aureus. Bacteria use a signaling system, quorum sensing (QS), to regulate their virulence. In this context, in silico study has been conducted to assess the ability of OBS to compete with the QS receptors. The tested OBS showed marked ability to bind and hinder QS receptors, indicating that anti-virulence activities of OBS could be due to blocking QS, the system that controls the bacterial virulence. Furthermore, anticancer activity has been further performed for such derivatives. The OBS compounds showed variable anti-tumor activities, specifically 9a, 9b, 9f and 9k, against different cancer lines. Conclusively, the OBS compounds can serve as antimicrobials, anti-virulence and anti-tumor agents.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Oxazolona/química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Sulfonamidas/química , Virulência/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Percepção de Quorum , Fatores de Virulência/metabolismo
17.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164110

RESUMO

Microorganisms are able to give rise to biofilm formation on food matrixes and along food industry infrastructures or medical equipment. This growth may be reduced by the application of molecules preventing bacterial adhesion on these surfaces. A new Schiff base ligand, derivative of hesperetin, HABH (2-amino-N'-(2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-ylidene)benzohydrazide), and its copper complex, CuHABH [CuLH2(OAc)], were designed, synthesized and analyzed in terms of their structure and physicochemical properties, and tested as antibacterial agents. Their structures both in a solid state and in solution were established using several methods: FT-IR, 1H NMR, 13C NMR, UV-Vis, FAB MS, EPR, ESI-MS and potentiometry. Coordination binding of the copper(II) complex dominating at the physiological pH region in the solution was found to be the same as that detected in the solid state. Furthermore, the interaction between the HABH and CuHABH with calf-thymus DNA (CT-DNA) were investigated. These interactions were tracked by UV-Vis, CD (circular dichroism) and spectrofluorimetry. The results indicate a stronger interaction of the CuHABH with the CT-DNA than the HABH. It can be assumed that the nature of the interactions is of the intercalating type, but in the high concentration range, the complex can bind to the DNA externally to phosphate residues or to a minor/major groove. The prepared compounds possess antibacterial and antibiofilm activities against Gram-positive and Gram-negative bacteria. Their antagonistic activity depends on the factor-strain test system. The glass was selected as a model surface for the experiments on antibiofilm activity. The adhesion of bacterial cells to the glass surface in the presence of the compounds was traced by luminometry and the best antiadhesive action against both bacterial strains was detected for the CuHABH complex. This molecule may play a crucial role in disrupting exopolymers (DNA/proteins) in biofilm formation and can be used to prevent bacterial adhesion especially on glass equipment.


Assuntos
Antibacterianos , Complexos de Coordenação , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Hesperidina , Hidrazonas , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Cobre/farmacologia , Hesperidina/química , Hesperidina/farmacologia , Hidrazonas/química , Hidrazonas/farmacologia , Testes de Sensibilidade Microbiana
18.
Molecules ; 27(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35164298

RESUMO

Certain macrolide antibiotics, azithromycin included, possess anti-inflammatory properties that are considered fundamental for their efficacy in the treatment of chronic inflammatory diseases, such as diffuse pan-bronchiolitis and cystic fibrosis. In this study, we disclose a novel azithromycin analog obtained via Barton-McCombie oxidation during which an unprecedented epimerization on the cladinose sugar occurs. Its structure was thoroughly investigated using NMR spectroscopy and compared to the natural epimer, revealing how the change in configuration of one single stereocenter (out of 16) profoundly diminished the antimicrobial activity through spatial manipulation of ribosome binding epitopes. At the same time, the anti-inflammatory properties of parent macrolide were retained, as demonstrated by inhibition of LPS- and cigarette-smoke-induced pulmonary inflammation. Not surprisingly, the compound has promising developable properties including good oral bioavailability and a half-life that supports once-daily dosing. This novel anti-inflammatory candidate has significant potential to fill the gap in existing anti-inflammatory agents and broaden treatment possibilities.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Azitromicina/análogos & derivados , Azitromicina/farmacologia , Animais , Antibacterianos/síntese química , Anti-Inflamatórios/síntese química , Azitromicina/síntese química , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Células Cultivadas , Humanos , Macrolídeos/síntese química , Macrolídeos/química , Macrolídeos/farmacologia , Camundongos Endogâmicos BALB C , Modelos Moleculares , Oxirredução , Pneumonia/tratamento farmacológico
19.
Molecules ; 27(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35164333

RESUMO

BACKGROUND: Infectious diseases represent a significant global strain on public health security and impact on socio-economic stability all over the world. The increasing resistance to the current antimicrobial treatment has resulted in the crucial need for the discovery and development of novel entities for the infectious treatment with different modes of action that could target both sensitive and resistant strains. METHODS: Compounds were synthesized using the classical organic chemistry methods. Prediction of biological activity spectra was carried out using PASS and PASS-based web applications. Pharmacophore modeling in LigandScout software was used for quantitative modeling of the antibacterial activity. Antimicrobial activity was evaluated using the microdilution method. AutoDock 4.2® software was used to elucidate probable bacterial and fungal molecular targets of the studied compounds. RESULTS: All compounds exhibited better antibacterial potency than ampicillin against all bacteria tested. Three compounds were tested against resistant strains MRSA, P. aeruginosa and E. coli and were found to be more potent than MRSA than reference drugs. All compounds demonstrated a higher degree of antifungal activity than the reference drugs bifonazole (6-17-fold) and ketoconazole (13-52-fold). Three of the most active compounds could be considered for further development of the new, more potent antimicrobial agents. CONCLUSION: Compounds 5b (Z)-3-(3-hydroxyphenyl)-5-((1-methyl-1H-indol-3-yl)methylene)-2-thioxothiazolidin-4-one and 5g (Z)-3-[5-(1H-Indol-3-ylmethylene)-4-oxo-2-thioxo-thiazolidin-3-yl]-benzoic acid as well as 5h (Z)-3-(5-((5-methoxy-1H-indol-3-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)benzoic acid can be considered as lead compounds for further development of more potent and safe antibacterial and antifungal agents.


Assuntos
Antibacterianos/síntese química , Antifúngicos/síntese química , Fungos/crescimento & desenvolvimento , Tiazolidinas/síntese química , Ampicilina/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Fungos/efeitos dos fármacos , Imidazóis/farmacologia , Cetoconazol/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Simulação de Acoplamento Molecular , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Relação Estrutura-Atividade , Tiazolidinas/química , Tiazolidinas/farmacologia
20.
Molecules ; 27(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35164334

RESUMO

Thiohydantoin and quinolone derivatives have attracted researchers' attention because of a broad spectrum of their medical applications. The aim of our research was to synthesize and analyze the antimicrobial properties of novel 2-thiohydantoin and 2-quinolone derivatives. For this purpose, two series of hybrid compounds were synthesized. Both series consisted of 2-thiohydantoin core and 2-quinolone derivative ring, however one of them was enriched with an acetic acid group at N3 atom in 2-thiohydantoin core. Antibacterial properties of these compounds were examined against bacteria: Staphylococcus aureus, Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. The antimicrobial assay was carried out using a serial dilution method to obtain the MIC. The influence of blue light irradiation on the tested compounds was investigated. The relative yield of singlet oxygen (1O2*, 1Δg) generation upon excitation with 420 nm was determined by a comparative method, employing perinaphthenone (PN) as a standard. Antimicrobial properties were also investigated after blue light irradiation of the suspensions of the hybrids and bacteria placed in microtitrate plates. Preliminary results confirmed that some of the hybrid compounds showed bacteriostatic activity to the reference Gram-positive bacterial strains and a few of them were bacteriostatic towards Gram-negative bacteria, as well. Blue light activation enhanced bacteriostatic effect of the tested compounds.


Assuntos
Antibacterianos/síntese química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Quinolonas/química , Tioidantoínas/química , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos , Luz , Testes de Sensibilidade Microbiana , Estrutura Molecular , Fenalenos/farmacologia , Pseudomonas aeruginosa , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...